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Abstract—In this paper, we explore a new form of dissemination that arises in distributed, mission-critical applications called Flash

Dissemination. This involves the rapid dissemination of rich information to a large number of recipients in a very short period of time. A

key characteristic of Flash Dissemination is its unpredictability (e.g., natural hazards), but when invoked it must harness all possible

resources to ensure timely delivery of information. Additionally, it must scale to a large number of recipients and perform efficiently in

highly heterogeneous (data, network) and failure prone environments. We investigate a peer-based approach based on the simple

principle of transferring dissemination load to information receivers using foundations from broadcast networks, gossip theory, and

random networks. Gossip-based protocols are well known for being stateless, scalable, and fault-tolerant; however, their performance

degrades as content size increases, because of the propagation of redundant gossip messages. In this paper, we propose Concurrent

Random Expanding Walkers (CREW), a smart gossip protocol designed to maximize the speed of dissemination by transmitting data

only as needed, and by exploiting both intra- and internode concurrency. CREW is designed to support both content and network

heterogeneity and deal with transmission failures without sacrificing dissemination speed. We implemented CREW on top of a scalable

middleware environment that allows for deployment across several platforms and developed optimizations without compromising on

the stateless nature of CREW. We evaluated CREW empirically and compared it to optimized implementations of popular gossip and

peer-based systems. Our experiments show that CREW significantly outperforms both traditional gossip and current large content

dissemination systems while sustaining its performance in the presence of network errors.

Index Terms—Gossip, broadcast, peer-to-peer, fault resilience, autonomic adaptation, middleware

Ç

1 INTRODUCTION

DISSEMINATION consists of the transmission of a data
object from a source to a group of intended recipients.

In this paper, we deal with a particularly useful (and often
ignored) form of dissemination that arises in time-critical
applications called Flash Dissemination. Such a scenario
consists of a rapid dissemination of varying amounts of
information to a large number of recipients in a very short
period of time. We motivate flash dissemination through
examples from the emergency management domain.
Consider “Shake-Cast,” a service from the Advanced
National Seismic System1 which aims to provide accurate
and timely information about seismic events. Sensor data
about the earthquake is collected in real time and then
processed to generate a “Shake-Map”: this is a GIS file that
can be “layered” on a city map, for example, to assess which

structures might be most affected. This information is sent
to various subscribers, e.g., city, county, and state emer-
gency management organizations, for immediate assess-
ment of the impact of the earthquake and to support
triaging, coordination and resource allocation decisions.
This information may also be regionally disseminated
instantaneously to participating organizations including
non-governmental agencies (Red Cross) and private entities
(utility companies, hospitals, schools, and so on) hence
resulting in a potentially large number (tens of thousands)
of subscribers. Subscribers register a machine ahead of time
to receive the information; such machines may use widely
different networks (T1, DSL, Microwave, and so on).

In such a setting, speedy delivery of information is
critical because this will enable more informed and timely
decision making resulting in better response. A flash
dissemination scenario entails the following characteristics:

. Unpredictability: The dissemination events (e.g., dis-
asters) are unpredictable, so the time when flash
dissemination will be needed cannot be known. A
flash dissemination system, must, therefore, be
ready to work well at very short notice and cannot
be scheduled or optimized in advance. Furthermore,
the availability of infrastructure upon which to
disseminate may be unpredictable. The disaster at
hand may be responsible for many unpredictable
faults, e.g., severing optic fibers, destroying hard
disks, power outages, and so on.

. Scalability: The number of end receivers may vary
from thousands to hundreds of thousands depending
upon the nature of flash dissemination and the
receivers that must be contacted.
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. Network and content heterogeneity: When end receivers
are geographically distributed, heterogeneity in the
network, in terms of latency, is natural. Added to
this, different receivers may possess different cap-
abilities in bandwidth leading to additional hetero-
geneity. Content Heterogeneity arises since rich
information such as pictures, small voice/video
clips, GIS files, and so on, range in size from
hundreds of KB to a couple of MB.

A naive solution for the problem of flash dissemination
would be to dedicate substantial resources (e.g., large
network pipes and fast servers) on a continuous basis. Such
a solution is not cost-effective because these resources will
be wasted except in the infrequent and unpredictable event
of a disaster. A more pragmatic solution can be achieved, if
we recast the dissemination problem to a peer-based setting,
where recipients participate in the dissemination process.
The basic idea is to tap the resources of the end receivers and
shift dissemination load to the set of clients organized as a
large peer-to-peer (P2P) dissemination system.

Dissemination systems today are tailored to two ends of
a spectrum: dissemination of small events and dissemina-
tion of large (possibly streaming) content. For small data,
the focus is usually on low-latency delivery of data in the
range of tens of kilobytes; for example, updates in a
multiplayer online game [18] or delivery of early warning
messages [33]. It is not obvious how these systems would
scale with larger size because they do not exploit high-
bandwidth nodes: conversely, such nodes are exploited in
large content delivery systems, which can, thus, sustain
high throughput, and are able to deliver content of the order
of hundreds of MB to GB. Again, it is not entirely obvious if
large content delivery systems can achieve very fast
dissemination for medium amounts of data. Additionally,
these systems are designed assuming “normal” network
and host behavior, e.g., a constant rate of faults (“churn”
rate [22], [26]).

Gossip-based broadcast systems, however, are designed
to accommodate unpredictable faults. But most gossip
systems do not usually take into account variation in node
bandwidths. For small amounts of data, this is usually not
much of a concern. However, for medium and large content,
the overhead due to the redundant messages makes
traditional gossip-based approaches considerably slower.

Our goal in building for Concurrent Random Expanding
Walkers (CREW) is to take the best of both worlds—fast
dissemination of content over heterogeneous networks and
under unpredictable conditions. CREW is a new, fully
decentralized, gossip-based protocol, designed from the
ground up, with a focus on reducing the data overhead and
on increasing both system wide and within node con-
currency. We implemented CREW using a scalable mid-
dleware platform and added optimizations without
compromising its stateless nature. Increased concurrency
and reduced overhead allows CREW to disseminate data
extremely fast and to scale in terms of both network and
content size. Additionally, CREW adapts to network
heterogeneity while degrading gracefully in the presence
of heterogeneous packet losses.

The primary contributions of this paper are:

1. Design, implementation, and evaluation of CREW, a
decentralized, stateless, gossip-based protocol for

fast dissemination of rich information. CREW is
almost twice as fast as current, optimized dissemi-
nation systems (such as BitTorrent and Bullet) for
flash dissemination and imposes around 400 percent
less data overhead than traditional gossip.

2. A thorough and systematic evaluation of CREW as
well as various dissemination systems demonstrating
the effectiveness of CREW for flash dissemination.

3. A gossip protocol that has a deterministic termina-
tion property and autonomically adjusts to fault
rates at runtime.

4. A new approach to gossip sampling service using
random walks on overlays. This approach reduces
data overhead of gossip messages and provides for
near real-time view management.

The rest of the paper is as follows: In Section 2, we
outline the rationale for the CREW protocol. In Section 3,
we describe the basic of CREW protocol and its extension
for heterogeneous network. The discussion of fault toler-
ance is described in Section 4. We analyze CREW in terms
of latency and overhead in Section 5. Implementation of
CREW is described in Section 6 and we evaluate its real
world performance in Section 7. Finally, we conclude in
Section 8.

2 RATIONALE FOR CREW

At an abstract level, flash dissemination is the canonical
broadcast problem in networks—how to distribute data,
split into M chunks, from one source to N other receivers,
as fast as possible. This problem was originally studied in
the context of routers [11] and has been revisited in the P2P
context [12]. The optimal solution to the problem is
composed of two main steps: 1) Getting one chunk to each
peer as fast as possible and then, 2) Optimally partitioning
the peers into equal sets of givers and receivers, until all
peers have all chunks. We name the first phase as the Ramp-
up Phase and the second phase as the Sustained Throughput
Phase. The optimal number of time-steps for dissemination
of M chunks to N nodes is LogðNÞ þ 2M � 1 [11], [12].

The optimal solution assumes homogeneous network
bandwidth and latency between nodes. Introducing hetero-
geneity immediately makes the problem NP-hard [16].
Different heuristics and data structures have been used to
tackle heterogeneous bandwidth nodes, along with special
P2P overlays explicitly designed for dealing with hetero-
geneity [29]. A bandwidth optimized tree seems a logical
data structure to use; high-bandwidth nodes are placed
near the root and support many children nodes. A forest-
based approach extends this idea even further so that leaf
nodes can not only be receivers but also data givers.
Splitstream [10] is one such sophisticated approach that
uses a distributed hash table (DHT) overlay to construct a
bandwidth optimal forest. However, both trees and forests
suffer from scalability problems in the presence of faults.

Mesh-based approaches relax the rigid overlay structure
and provide for better fault tolerance by constructing
multiple paths between nodes. Additionally, mesh-based
approaches seem to provide higher throughput than tree-
based approaches [20], [30], [24], [34]. BitTorrent [1], the
current de facto protocol for distributing large content is
also a mesh-based system. The popular nature of BitTorrent
has led many researchers to examine it from a more
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theoretical perspective [7], [26] and show why BitTorrent
works so well in practice in distributing large content.
These systems are tailored for delivering large content to a
large number of receivers. When the content is large, the
sustained throughput phase clearly overshadows the ramp-
up phase. When content to be disseminated is relatively
small (hundreds of KBs to couple of MBs) and the number
of receivers still large, then the ramp up phase contributes
significantly to the total dissemination time. Additionally,
delivering large content can easily extend into hours,
providing ample time for system reconfiguration and fine-
tuning. By contrast, in the case of flash dissemination, the
time available for exploiting high-bandwidth nodes is
significantly less.

During disasters systems and networks become unstable
and unpredictable; therefore, a primary objective is to
achieve dissemination in less-than-perfect network condi-
tions. Gossip [15]-based broadcast protocols are an almost
perfect fit for this scenario. They trade redundancy for
scalability and simplicity. Gossip-based broadcast is ex-
tremely effective and scalable for various dissemination
scenarios. However, they suffer from various deficiencies
when applied to flash dissemination. We revisit a well-
known gossip-based broadcast protocol and examine these
deficiencies in more detail.

2.1 Gossip-Based Broadcast Revisited

In gossip-based broadcast, every node that receives a
message, buffers it, and then forwards it (i.e., gossips it) a
certain number of times, each time to a randomly selected
subset of processes [27]. In effect, most gossip protocols, for
example, lpbcast [25], are implemented as “push-based”
mechanisms. The number of processes to push to is also
usually fixed and is known as fan-out. A fan-out of 3-5 is
usually sufficient, with normal Internet packet loss rate, to
guarantee reliable delivery of a message to all nodes in the
system. Selecting random nodes (also known as the
sampling service [14]) to push to, is a core challenge. Each
node selects random nodes from its current “view” (a local
cache of addresses of other nodes). In lpbcast, a node
maintains a “partial view” of the system which consists of
addresses of L other random nodes. This view is then
attached and forwarded in each gossip message so that
information about nodes that join/leave the system is
updated, over time, in all nodes. A receiving node, then
combines its own view with the view contained in the
gossip message. To keep view size scalable various
intelligent policies are used to truncate the view back to a
constant size. The lpbcast is an elegant and simple gossip-
based broadcast system that achieves scalability and fast
delivery of events: for N nodes in a system, it takes LogðNÞ
time to deliver the message to all nodes, with high
probability of events. However, two factors impede the
use of lpbcast for fast delivery of medium and large size
content: high data overhead leading to slow dissemination
and lack of adaptation to heterogeneity.

2.1.1 Data Overhead and Dissemination Time

The fan-out of gossip directly impacts the dissemination
time, detrimentally. Consider content of a certain size to be
disseminated among N nodes. Let it take M unit of time to
send the content fully between two nodes using their full
bandwidth (Assume all nodes have equal bandwidth).

Sending content as one gossip message would then require
OðM � LogðNÞÞ time. Ideally, if we split the content into
M chunks, and if the fan-out is K, the time bound can be
OðM þ LogKðNÞÞ and the number of disseminated chunks
cannot be lower than KðM þ LogKðNÞÞ. The fan-out,
therefore, directly affects the best case completion time,
with a larger fan-out invariably leading to high data
overhead. Apart from the data overhead due to sending
redundant messages, each message also carries the “view,”
adding further to the overhead and increasing the dis-
semination time. The longer dissemination time due to the
large overhead was also shown empirically in [20].

2.1.2 Lack of Adaptation to Heterogeneity

Fixed fan-out in nodes makes gossip not easily adaptable to
heterogeneity in bandwidth. For example, how to assign
more data transfer work to high-bandwidth nodes and how
to prevent low bandwidth ones from getting overwhelmed.
Additionally, if gossip is implemented over UDP, as is
natural to do, congestion at the network layer must also be
taken into consideration [9]. In [27], the authors examine
the issue of adaptation and congestion control. However,
they adapt to congestion at the level of application level
buffers and not directly at the network level. Estimating
and exploiting bandwidth is a more involved problem as
we describe in Section 3.2.2. Another drawback of having
fixed fan-out is lack of adaptation to dynamic fault rates.
During flash dissemination, it is hard to predict beforehand
the network conditions and fault rates. In this case, a fixed
fan-out introduces an unappealing tradeoff—too large a
fan-out would imply extremely slow dissemination
whereas a small fan-out would lead to some node not
getting the information at all.

3 THE CREW PROTOCOL: MAKING GOSSIP FAST

Our goal is to maintain the inherent stateless, scalable, and
fault-resilient properties of gossip while achieving: 1) fast
dissemination, 2) over heterogeneous networks.

We devise a metadata-based pull approach as a funda-
mental building block to achieve these two goals. This
design dramatically reduces the amount of redundant data
sent in the network thereby making dissemination very fast.
Further, it allows to exploit high-bandwidth nodes to do
more work aiding in faster dissemination while safeguard-
ing low-bandwidth nodes from becoming overwhelmed.

To make this new system work, we also needed to design
a scalable and low overhead random sampling service. We
describe this new substrate in Section 3.3.

3.1 Reducing Redundant Messages

As noted in Section 2, the basic bottleneck of gossip is the
overhead of redundant gossip messages. To tackle this, we
use a metadata-based pull mechanism to give nodes
“content awareness.” Nodes use the metadata to pull only
messages that they do not have.

The original content is divided into multiple chunks and
each chunk is assigned a unique chunk-id.2 The list of all
chunk-ids is termed as metadata.3 Metadata information
about the chunks (and their ids) are known by all nodes
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before they start gossiping (we will describe how this is
achieved in Section 3.3). Next, we invert the “fan-out push”
logic of traditional gossip into a “pull-based” mechanism. A
pull-initiator node sends out the list of the ids of the chunks
that it has already received to a target node, selected
uniformly at random. The target node then sends, one
chunk at random, that the initiator does not have. If the
target node has no “missing” chunks, it sends an error
message. Thus, nodes never pull duplicate chunks. This basic
protocol is described in Fig. 1. Once a node receives all
chunks that are listed in the metadata, it immediately stops
gossiping. Thus, CREW has a deterministic termination-
delivery property—when all nodes terminate (stop gossiping),
all nodes have all chunks. This is unlike push-based gossip
that guarantees only probabilistic delivery at termination.

3.2 Extending CREW for Heterogeneous Networks

Wide area networks are seldom homogeneous. There is
varying latency and nodes have varying bandwidths, some-
times in the order of magnitudes. For example, internode
latency can vary between 2 and 700 milliseconds and
bandwidth can vary from 64 Kbps to 10 Mbps. This raises
both challenges and opportunities. In particular, 1) How to
reduce the detrimental effects of high latency? 2) How can
high bandwidth nodes be exploited? and 3) How to adapt
high-bandwidth nodes, at runtime, from overwhelming
(and congesting) low-bandwidth nodes? We explore these
questions and propose additions to the basic CREW protocol
to tackle these issues.

3.2.1 Latency Amortization

In the basic CREW protocol, a node waits for the current
pull to finish before starting on the next one. When a node
initiates a pull message to another random node, it must
wait at least for round trip time (RTT), between the two
nodes, before hearing back any reply (error or chunk
reception). If the RTT between two nodes is 500 ms, for
example, then nothing useful happens for almost half a
second. During this time, a node “wastes” its bandwidth
entirely. If the reply was an error message, the node has to
start again. Moreover, to preserve the gossip-nature of
CREW, there is no straightforward way to amortize this
long setup time—a node moves away to another random
node after a pull. In other protocols (such as BitTorrent,
Bullet, SplitStream, and so on), connections once open, are
used to transfer multiple chunks. Changing CREW to do
multiple transfers with one node would be against the basic
gossip model. This, therefore, seems like a fundamental
clash between theory and practice—sticking to pull-based
gossip would make CREW extremely slow in any network
where nodes had large latencies.

However, high latency cost can be amortized in another
way—not by transacting multiple chunks with a node, but by
transacting single chunks with multiple nodes, concurrently.
We call this the concurrent pull optimization. CREW protocol
enhanced to deal with concurrency is shown in Fig. 2. Doing
concurrent pulls naively, however, may result in a node
receiving duplicate chunks. For example, two gossip pulls
initiated by concurrent pulls at the same time, may download
the same chunk. To prevent this, we split the gossip step into
two phases. In the first phase, an “intent to pull” message is
sent to the target node (Fig. 2(Line 5)). The target node replies
with the chunk-id of the chunk, which it would have actually
given back had this been basic CREW. The received id is then
compared to check if some other concurrent pull is already
trying to get this chunk. If not, the chunk is really pulled in
the second phase (Fig. 2(Lines 7-14)).

Since nodes are contacted at random, some of the
contacted nodes have low latency while others may have
high latency. Chunk transfers from lower latency nodes can
overlap with the setup to higher latency nodes—thereby
masking the setup cost. The problem is then deciding what
would be a good concurrency factor. Too low a factor might
result in underutilized bandwidth and too high a factor
results in bandwidth being unnecessarily split across many
transactions, thus delaying all the transactions and increas-
ing the dissemination time. Additionally, we would like the
concurrency factor to be autonomic and dynamically
adaptive at runtime. To achieve this, a node keeps track
of its “spare bandwidth.” Whenever spare bandwidth
exists, a node immediately starts a new pull (Fig. 2 (line-2)).

3.2.2 Bandwidth Estimation

Estimating the spare bandwidth of a node is not trivial, with
the very notion of bandwidth being tricky to define precisely.
Specially, in the 1-to-many case, what is the maximum
bandwidth of a node, say A, with respect to a target set of
nodes, N? For example, a node may have 100 Mbps
bandwidth to its local area router but only 200 Kbps
bandwidth to another faraway router. If the target set of
nodes all fall behind the faraway router, then the node’s
maximum bandwidth (w.r.t. to target set) can only be less
than 200 Kbps. If we extend this example to multiple nodes
being behind multiple routers, then estimation of maximum
bandwidth becomes a combinatorial problem. The max-
imum bandwidth of a node, A, can then be defined as the
maximum throughput achieved by communicating simulta-
neously with some subset of nodes in N . A way to do this
would be to compute all possible subsets of N and then test
which subset gives the maximum bandwidth.
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Current systems, like BitTorrent and Bullet0 use heur-
istics to calculate a node’s maximum bandwidth. For
example, in BitTorrent, a node connects at random, to a
subset of the target nodes and measures the bandwidth. At
regular intervals, a new node is chosen, usually at random,
and a connection is opened to it. If the bandwidth increases,
then one of the old connections which had the least
bandwidth is dropped. In general, the idea is for each node
to slowly calculate and evolve toward the subset of nodes
that give it its maximum bandwidth. When the content to be
disseminated is large, there is significant time for nodes to
stabilize and maximize their bandwidth utilization. In flash
dissemination, the content is usually small and, hence, there
is relatively little time to evolve to maximum utilization.
The gossip nature of CREW, however, allows us to leverage
the fast moving connection setup to estimate maximum
bandwidth rapidly.

In CREW, each node starts with an initial value of zero as
its maximum bandwidth. Two pull connections are allowed
to progress concurrently at any time, irrespective of spare
bandwidth. The initial maximum bandwidth is estimated
from the first two pulls. After this, with every new connection
that is opened (for either initiating a pull or transferring a
chunk), the maximum bandwidth estimate is updated, if
current bandwidth utilization exceeds the current maximum
bandwidth estimate. This simple scheme is highly effective in
estimating the maximum bandwidth of a node rapidly. Once
maximum bandwidth is calculated, calculating spare band-
width is straightforward. Nodes also use the estimate of
maximum bandwidth to also decide whether to allow other
peers to download chunks from them. If a peer is using up all
its bandwidth, then it will return an error message for all pull
requests. This is used by the puller node to estimate global
congestion as we explain next.

3.2.3 Congestion Adaptation

If a low-bandwidth node is already at its peak bandwidth
utilization, then it rejects any new pull requests, irrespective
of whether it has missing chunks or not. In the pathological
case, where most nodes have no spare bandwidth, we
would like nodes with spare capacity not to contact these
“busy” nodes. If nodes with spare bandwidth try to do
pulls, they end up generating redundant data (in the form
of pull requests) and slowing down the dissemination
process. The gossip nature of CREW, however, allows us to
elegantly tackle this problem. When a node makes a pull,
the target node estimates if it has spare bandwidth. If not, it
replies back with a special error message, saying that it is
“busy.” If the initiator hears many such “busy” messages in
a short period of time, then it can be fairly certain that most
nodes are near capacity (and can then take appropriate
action like backing off). This is due to the uniform random
property of gossip. The replies from the target nodes are
representative of the replies of a random sample from the
total population. Thus, if most nodes in the random sample
are busy, then most nodes in the total population will also
be busy.

More generally, the reply message from the target node
may contain any local state and the initiator can quickly
glean global state information from these individual replies.
For example, if the target node gets a pull request and it
does not have any available chunks to transfer, it replies
with a “no chunks available” message. If the initiator node

hears many of this message, it notices that there are not
enough number of chunks globally and starts employing
exponential back off delays between pulling requests in
order to reduce the number of meaningless pulling requests,
which causing “no chunks available” message as responses.
According to this, while all nodes start off trying to pull
from few source nodes, they will quickly reduce their rate of
pulling (due to exponential backoff) and CREW can prevent
from being congested with meaningless pulling requests.

Pull replies are, therefore, a powerful mechanism that can be
used to estimate global properties about the system.

3.3 Bounce: A Low Cost Overlay for Scalable
Sampling Service

CREW is a gossip protocol and, thus, needs a random
sampling and view management service. In traditional
gossip protocols, the view management is done by sending
a partial view from one node to another. Each node uses the
partial views coming in to decide what partial view it
should maintain. The partial view is then used to imple-
ment random sampling. Also, traditionally, the view is sent
as metadata in each data transmission message, which is the
additional overhead.

In CREW, when dissemination starts, nodes broadcast
the metadata about data chunks to other nodes in its partial
view. Since the metadata is very small, nodes get the
metadata very fast (see Section 7.2.1) and start many
concurrent pulls. Many of these pulls do not yield any
data chunks to transfer so nodes have to look out for more
nodes to pull from. Further, high-bandwidth nodes need to
pull from many more nodes than low-bandwidth nodes.
Keeping a fixed partial view in each node, thus, becomes
another source of bottleneck in CREW. What is needed is a
scalable, low overhead, view management service that is
able to provide as many random peers as a node needs to
keep its dissemination going at full speed.

We, therefore, designed a fully new, but simple, view
management and random sampling service. Our sampling
service is based on the theory of random walks on overlays.
Gkantsidis et al. [13] showed that the nodes visited during a
random walk of X steps on an expander network, is an
approximation of a random subset of size X (with a larger
X leading to a better approximation). Finding the next
random node to gossip with, can now be as trivial as getting
the next random node in a random walk. The overhead for
each gossip is now one extra node address. The target node
returns the address of one of its random neighbor, in the
pull reply message. Thus, the overhead is one instead of
“view size” for each gossip message. In CREW, we maintain
an explicit overlay among the nodes (using open TCP
connections) for doing the random walk. Next, we describe
how we construct and maintain this overlay in a decen-
tralized stateless manner.

An ideal overlay for random walks is an expander
overlay [21], [13]. However, in these overlays, a node must
keep explicit state information about its neighbors (for
example, which Hamiltonian cycle [21] the neighbor
belongs to and whether it is a predecessor or successor).
This runs counterintuitive to the stateless nature of gossip.
Therefore, we designed a new decentralized protocol,
Bounce, that creates a sparse, low cluster [17] and small-
diameter overlay. Additionally, Bounce requires only small
number of message exchanges to add a new node and the
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average number of messages required to build the Bounce
overlay grows sublinearly with the network size.

In Bounce, to acquire a new neighbor, a node does a
random walk on the overlay asking nodes if they will accept
a new neighbor (the walking node). If yes, a new neighbor
link is formed between the walking node and the acceptor
node. Else, the walking node continues with its random
walk until some other node accepts it as its neighbor. The
walking node keeps track of how many times it has been
“rejected” so far. This parameter (called Tries) is used by
acceptor nodes (along with their own degree) to decide
whether to accept the walking node or not. The crux of the
problem here is to prevent some nodes from acquiring too
many neighbors while also keeping the number of retries
(rejections) low. The exact protocol is shown in Figs. 3 and 4.
The “Bounce Formula” of the accept method that we use is

ProbAccept ¼ 1

self:degree
þ randð0; 1Þ � LogðTriesÞ:

The probability of acceptance is, therefore, directly
proportional to the number of rejects and inversely
proportional to a node’s degree. The value of the probability
is in ½0; 1� and values over 1 set to 1. Simulations showed
that for constructing a 10,000-node network, with each node
having at least four neighbor links, a node required, on
average, 2.820 messages to acquire a neighbor link. The
clustering coefficient of the constructed overlay network
was reasonably low (0.074) to be a good expander network
as defined in [17].

4 FAULT TOLERANCE IN CREW

The pull-based gossip approach of CREW has surprising
new fault tolerant properties but at the same time
introduces new points of failure. In this section, we analyze
the new fault tolerant properties and show how the various
points of failure can be elegantly tackled.

4.1 New Fault Tolerant Properties

The pull logic of CREW completely eliminates the need for
deciding optimum fan-out. A node does as many pulls as
necessary to get all chunks. If faults occur when it is
pulling, it just pulls more number times. This simple
mechanism therefore leads to an elegant, autonomic fault-
tolerance property - depending upon the fault rate, nodes do less
or more pulls, automatically. The simplicity of this property is
hard to overstate.

CREW also benefits from a near real-time view manage-
ment property. The “view” of a node in CREW, is its list of
neighbors. If a particular node dies due to a fault, its
neighbors recognize it’s death (due to the distributed
health-check mechanism where each node randomly pings

one of it’s neighbors to see whether it is alive) and remove it
from their neighbor-list. Once all neighbors remove the
node from their neighbor lists, no more random walks are
forwarded to the dead node. In essence, the dead node has
vanished from all nodes’ view. Thus, using random walks in
overlay for view management allows for near real-time
updates to views of all nodes.

In the next subsections, we reanalyze the fault tolerance

of CREW since it is no longer a simple fire-and-forget

protocol. The main challenges include:

1. guaranteeing that all nodes get the metadata and
that the view management and sampling service is
robust to

2. node failures (including node churn),
3. network partitions, and
4. packet losses.

4.2 Metadata Fault Tolerance

Metadata is initially broadcast on the overlay. When a node

gets the metadata for the first time, it forwards the metadata to

all of its neighbors, except the one from which it was received.

This ensures that all nodes get the metadata. But what

happens if a node fails to get the metadata in the first place?

This can happen if the underlying network of a node goes

down at the point of broadcast and then becomes functional

again later. In this case, if the node reconnects back into the

overlay, then it will hear some pull messages from other

nodes. Pull messages contain a metadata identifier. If a node

sees an unknown metadata identifier, it can then, explicitly

pull for this metadata, before pulling for the chunks.

4.3 Overlay Fault Tolerance

The Bounce protocol constructs and maintains the overlay

network. As long as the overlay is connected and has good

properties (low diameter and low clustering coefficient),

CREW can perform efficiently. We add the following two

tweaks to the bounce protocol to enable it to deal with node

churn and underlying network partitions:

1. Bootstrap nodes. We assume a small set of well-known
bootstrap nodes. When a node wants to join the
overlay, it has to first contact one of these bootstrap
nodes, selected randomly. The bootstrap nodes main-
tain a fully connected overlay graph of themselves.

2. Neighbor dropping. Periodically, a node checks if it has
more than the threshold number of neighbors. If so, it
drops all it’s neighbors with a probability of 1� k=n,
where k is the threshold and n is the current number
of neighbors. Setting k to 4 is usually reasonable.
With this policy, the more neighbors a node has, the
more likely it will start fresh. This policy eagerly
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introduces churn in the overlay network to expedite
the healing process from severe network partitioning.

4.3.1 Handling Node Churn

The overlay network, first and foremost, needs to be

resilient to nodes failing. Nodes failing should not result
in the overlay network getting partitioned (the view

management breaks in this case) and second, the properties

of the overlay that allow the random sampling service
should be preserved (low diameter and low clustering

coefficient). In this section, we evaluate how the Bounce

protocol maintains these characteristics under churn.
We implemented an event-driven simulator to mimic

each node performing Bounce. Then, we assigned on/off

times for a node based on an exponential distribution [32],

[35]. The average times are 100 and 200 time units for on

and off, respectively. With this setting, around 2 percent of
total number of nodes in the overlay are changed every time

unit. When a node joins the system, its on-time is assigned

and it contacts one of preselected bootstrap nodes to initiate
the Bounce protocol. Each node follows the Bounce protocol

to pick up to M neighbors (threshold number of neighbors).

We set M to be 4, used 10 bootstrap nodes and simulated
10,000 nodes overall.

Fig. 5a shows CDF of node degree captured at various
time snapshots. The degree distribution is extremely

consistent over time and one can hardly differentiate the

CDF lines for the various snapshots. We then plot the
diameter and clustering coefficient values at different points

in time in Fig. 5b. While the diameter varies a bit over time

(due to the neighbor-dropping tweak), the clustering
coefficient stays very stable. This confirms our belief that

even under node churn, Bounce can maintain very good

overlay characteristics.

4.3.2 Handling Network Partitions

During disasters, it is quite possible that the underlying

network itself is partitioned. When this happens, nodes in
each partition remove their neighbors from the other

partition. Thus, the underlying partition manifests itself as

an overlay partition.
The interesting part is when the underlying partition

heals. We would like the overlay to merge back fast. The
combination of Bounce along with the two tweaks makes

this possible. We examine in detail, one particular partition

scenario and simulate what happens in it. We then
generalize this to any partition scenario.

Equal partition. In this case, the underlying network
partitions, which results in the overlay splitting into two
equal partitions. The bootstrap nodes are divided as well
among the partitions. A short while after the underlay
partitions, nodes detect that they have lost all their neighbors
from the other partition. On average, each node loses half of
its neighbors. The node then makes up for the loss of
neighbors by using Bounce. After a while each node gets
back at least the threshold number of neighbors. However,
now all neighbors are from the same underlying partition.

Let us call these partitions P1 and P2. We ran a
simulation to show the effect of the partition and what
happens when the underlay heals. Let the underlay
partition occur at T-100 and let it heal back at T-210.
Fig. 5c shows the timeline of what happens. We plot only
the scenario from P1’s point of view (since the partition is
symmetric, the same is happening on P2 as well). The each
line shows the average number of neighbors in each
partition. The line with circles shows the number of
P2 neighbors that P1 nodes have. From T-100 to T-210, this
is zero (due to the underlay partition). The line with squares
shows the number of P1 neighbors that P1 nodes have.
From T-210 onwards, the line with circles trends upwards
and the line with squares trends downwards, showing that
nodes in P1 are getting more neighbors in P2. Around
T-300, the overlay partition has healed.

So what makes the overlay heal? Due to tweak-2, nodes
in P1 are dropping neighbors and trying to get more
neighbors. During the underlay partition, they only get
neighbors inside P1. However, as soon as the underlay
heals, the bootstrap nodes form a fully connected graph of
themselves. When this happens, nodes that are starting
fresh (due to dropping all neighbors) contact one of the
bootstrap nodes and have a chance to get a neighbor from
the other partition. As neighbor-dropping continues, nodes
from across the partitions start to diffuse into the other side.
Over time, the overlay becomes fully intermixed. As a
double check, we measured the diameter and clustering
coefficient at T-500 and there was not any noticeable
difference from before the partition.

Generalization. Assume there are two partitions (not
equal) and that the bootstrap nodes are divided unequally
among the partitions (one partition could have zero boot-
strap nodes). In the partition that has zero bootstrap nodes,
when a node drops all it’s neighbors, it would not be able to
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get any more neighbors. It has to then wait until the
partition heals and it is able to contact the bootstrap nodes.
Apart from this one detail, when the partition merges, the
two partitions merge exactly like in the scenario above.
Further, this can also be generalized to multiple partitions.
Merging can always be thought of as merging of two
partitions until all partitions are merged.

4.4 Dealing With Network Packet Loss

Content-aware pulling in CREW introduces a fault tolerance
challenge that is absent in push-based gossip. The list of
chunk-ids that a node sends to the target pull node may get
lost, in which case the target node will never reply back.
Additionally, if chunks are sent as smaller data packets,
then, even if one data packet is lost, the entire chunk is
“corrupted.” When packet loss rate increases, the perfor-
mance of CREW can degrade exponentially fast. This
challenge can be addressed by using an underlying transport
protocol that does packet loss detection and recovery. Thus,
we use TCP as the underlying transport for all internode
communication in CREW. TCP provides an efficient ACK-
based recovery and retransmit protocol. Using a ACK-based
retransmit approach (such as TCP) instead of a naive fire-
and-forget policy, allows CREW’s performance to degrade
linearly, instead of exponentially, as a function of packet loss
rate [23]. Thus, using TCP not only alleviates this weakness,
but also provides other important benefits—such as auto-
matic congestion control at the network level. Using TCP,
however, introduces other challenges such as higher setup
cost (due to 3-way handshake) and dealing with slow starts.
These are addressed by the concurrency extensions (as
described in Section 3.2) and the optimizations in CREW
implementation (Section 6).

5 CREW ANALYSIS

We analyze CREW with a simplified model in which all
nodes have equal bandwidth and latency. Let the content to
be disseminated be divided into M chunks, each of which, if
transferred between two nodes using their full bandwidth,
takes 1 unit of time. Let the total number of nodes be N .
Assume that at time T0, all nodes have received information
on the list of chunks to get and start their gossip loops. We
model CREW as progressing in synchronous time steps and
analyze the time complexity in terms of the time steps.
Assume that each time step can be further subdivided into
three smaller time steps:

SubStep 1: Each node chooses another node, uniformly at
random, and sends it its list of received chunks.

SubStep 2: Each node chooses to honor, uniformly at
random, only one request. Other requests are rejected.

SubStep 3: A node sends out a chunk, if possible.
After the first time step, a node may have multiple

“incoming” requests from other nodes. Additionally, it has
one “outgoing” request. Therefore in the second substep, a
node chooses at random from all the incoming requests and
the single outgoing request. If a node, say u requests node v,
then in the third time step, it simply waits to hear from v.
On the other v may have decided to honor some other
request, in which case u will not get any data in the third
substep. Only if v also chooses u and if v has some chunk

that u does not have, will u get anything in the third

substep. We also assume that the second substep is long

enough to let u receive all the incoming requests.

Additionally, we assume that the third substep is the one

that takes the longest time. If a node does not get (or give)

anything in the third substep, it still waits the amount of

time that it would have taken had it sent out a chunk. In

effect, nodes are fully synchronized at each step and also at

each substep.
Dissemination time. To model CREW, we started with an

approximate, analytical model. We assumed that for the first

M steps, the seeder picks one node at random and injects it

with a chunk (thus giving out all M chunks in M time).

Thereafter, we used an approximate expected analysis to

model the number of chunks possessed by each node, at

each time step. This analysis led us to the following theorem:

Theorem 5.1. Let a content be split into M chunks and

disseminated into a network of N peers. The expected average

number of chunks in a peer is Nkþ1 ¼ Nk þ 1
4 ð1� ð1 �

Nk

M ð1�
Nk

M ÞÞ
MÞ, with N0 ¼ M

N . where k is the number of time

steps after all M chunks have been injected by the root into

the network.

Proof. In the first phase of operation, the root injects the

M chunks, one after the other, choosing at each step

another peer uniformly at random. Hence, this phase

takes M time steps. At the beginning of the second

phase, all M chunks are in the network and each node

has on average N0 ¼ M
N chunks. This is a slight

underestimate of the true N0, which would also include

the average number of chunks sent from peers, other

than the root, during the first phase. We use M
N for

convenience; in reality, CREW will have a slightly better

head start.
At each time step, a peer p will contact another peer

q uniformly at random. Independent of this operation, p
and q will decide whether to act as sender or receiver
during the step. A connection can now be established
along the directed edge ðq; pÞ if and only if q decides to
act as a sender (probability 1

2 ) and p decides to act as a
receiver (again probability 1

2 ). Therefore, with prob-
ability 1

4 the two nodes will pick “compatible” roles and
edge ðq; pÞ will be “active” in this time step. Since there
are N nodes who contact some other node in each step,
on an average N

4 connections will be established in each
time step.

Additionally, a successful transfer will take place if
the receiver lacks a chunk that the sender possesses. The
receiver will not be able to receive a particular chunk
from the sender if either 1) the sender lacks it
(probability 1� Nk

M , or 2) the sender has it, but so does
the receiver (probability Nk

M

2
. So, a particular chunk

will not be receivable with probability 1� Nk

M þ
Nk

M

2 ¼ 1 �
Nk

M ð1�
Nk

M Þ. The two peers will not be able to effect a
transfer if all M chunks are, thus, not receivable, hence
with probability ð1� Nk

M ð1�
Nk

M ÞÞ
M . Conversely, they will

succeed in performing a transfer with probability
1� ð1� Nk

M ð1�
Nk

M ÞÞ
M . Thus, the expected number of

transfers will be:
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Tkþ1 ¼
N

4
1� 1�Nk

M
1�Nk

M

� �� �M !
:

The average number of chunks in each node will
increase by Tkþ1

N , so:

Nkþ1 ¼ Nk þ
1

4
1� 1�Nk

M
1�Nk

M

� �� �M !
:

The initial condition for this recurrence is N0 ¼ M
N as

previously derived. tu
This recurrence relation has no closed-form solution and

hard to analyze. Therefore, we decided to build a simulator
for the simplified model of CREW (where the seeder does not
play any special part in the first M steps, as in Theorem-5.1).

The simulator simulates the simplified CREW protocol
for given N and M values. The output is the number of time
steps needed for all nodes to have all chunks. Due to the
random nature of CREW, the time steps (even for fixed M
and N values) vary over different iterations. Therefore, for
each combination of M and N , we ran 50 runs. The results
are shown in Fig. 6. The X-axis is logarithmic and
represents the number of nodes (N). The Y -axis is the total
time steps for N nodes to receive all M chunks. We tested
for different values of M and these are plotted in the same
graph. Each data point represents the average value of these
50 runs along with the standard deviation. We also plot six
curves that best fit the data points.

We tried a wide variety of sample functions to test their
“fit” to the data; among others we tried OðM þ logNÞ and
OðM � logNÞ. However, as Fig. 6 shows, a � ðM þ logN �
logMÞ is a very good fit. The reduced Chi-square for each of
the fitted lines is less than 0.1 (indicating an extremely good
fit). The value of a for each of the fitted lines decreases quite
slowly (with logarithmic increase in M) indicating that this
is both a conservative and good approximation. For other
sample functions, the reduced Chi-square was either quite
large or a increased with M. Thus, we believe that the
dissemination time for CREW can be modeled as
OðM þ logN � logMÞ. This is suboptimal with respect to
the optimal solution of OðM þ logNÞ. However, the con-
stant factor for CREW seems to be low (around 5).
Additionally, the suboptimality of CREW increases only
logarithmically with number of chunks (or file size). For
low number of chunks, the difference between CREW and
an optimal solution would be quite small.

Data overhead. In CREW, no duplicate chunks are ever
sent out. Hence, the overhead is entirely due to nodes

sending out the list of chunk-ids; let this list be called the
HandshakeMessage. If we assume that all nodes perform pulls
until all nodes get the entire content (a worst case scenario),
then the total data sent out in CREW is: TimeSteps �N �
SizeðHandshakeMessageÞ þN �M � SizeðChunkÞ. Further,
let us define data overhead as ðsent�minÞ=min, where sent
is the total data sent into the network and min is the
minimum amount of data that needs to be sent out (by any
scheme). It is easy to see that min isN �M (all nodes have to
getM chunks). For simplicity and without loss of generality,
let size of the chunk be 1 and the size of handshake be h
(some fraction of the chunk size).

The overhead in CREW can now be calculated as:

Overhead ¼ k � h � ðM þ logN � logMÞ �N
N �M � 1

¼ k � h � 1þ logN � logM

M

� �
:

The overhead, therefore, increases (sublinearly) with
network size and decreases with increasing content size.
This is because, when the content is made bigger, the
sustained throughput phase is much longer and the
overhead in this phase is much smaller (nodes are not
wasting their pulls).

6 CREW: IMPLEMENTATION

Our goal was to design and implement CREW so that it
would perform well in real-world heterogeneous networks.
The design and implementation was an iterative process
with valuable insights provided by the Modelnet testbed
(we describe the testbed setup in Section 7). In building the
actual system, our overriding philosophy was to make the
system as modular and easy to maintain as possible. Rather
than developing it from scratch, we choose an object-based
middleware, ICE [3], as our fundamental software platform.
As we will describe, this choice considerably eased and
simplified our implementation. Additionally, developing
CREW using ICE allows us to leverage all the benefits of a
cross-platform middleware platform. We have Java and
C++ versions of CREW running on Windows XP, Linux,
and FreeBSD.

CREW is implemented as a set of interacting modules, as
shown in Fig. 7. We provide a brief overview of these
modules and then describe them in detail. The actual CREW
protocol is executed by the pull/push threads. A pull/push
thread uses various supporting modules. The Bandwidth
Manager calculates and estimates spare bandwidth on a
node and the pull thread uses this to figure out if it should
do more concurrent pulls. The Random Walker is respon-
sible for traversing the overlay and collecting random nodes
to gossip with. The Random Walker is in turn dependent
upon the Neighbor Manager, which makes sure that a node
is always connected into the overlay. We now describe the
modules in greater detail.

Pull manager. The pull manager is initialized as soon as
Metadata is received through a neighbor and remains alive
until all chunks (for particular content) are collected.
Depending upon spare bandwidth (information that is got
from the Bandwidth Manager), the pull manager initiates
gossip pulls.

Push manager. Similar to the pull manager, we also
developed a Push Manager in which a node pushes chunks
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to other nodes (again after executing a handshake to make
sure that duplicate chunks are not transferred). In networks
where high-bandwidth nodes exist, we would expect these
nodes to complete faster than low-bandwidth nodes. To
exploit these nodes, we introduced the “push” mechanism
in CREW. After a node finishes pulling all chunks, it
switches to a push mode. In this mode, a node randomly
visits other nodes and enquires if the target node needs any
chunk. If so, a chunk is pushed to the target node. A
problem with the push protocol, as compared to the pull
protocol, is the termination criterion—when does a node
decide to stop pushing? We implement termination in a
probabilistic way. The probability that a node will stop
pushing is directly proportional to the number of con-
secutive “rejects” that a node encounters. A reject is an
error in the handshake, which indicates that the node
visited does not need and chunks from the visiting node. In
our implementation, we use the following formula to
calculate the probability of stopping: ProbðstopÞ ¼ 1 �

1
rejects ; rejects � 1. Usually, a push walk stops after it hears
four consecutive rejects. rejects is reset to 1 as soon as a
valid chunk-id is received in the push random walk.

Bandwidth manager. ICE provides facilities for statistic
gathering, one of which includes the bytes transferred in/out
through the middleware. We use this to calculate the current
bandwidth usage, on every epoch of 300 milliseconds.
Maximum and spare bandwidth calculation is done as
described in Section 3.2.2.

Random walker. By implementing Random Walker as a
separate module, we abstracted out the sampling service
functionality. This allowed us to make an interesting
optimization that is fully transparent to the pull thread.
The Random Walker visits a certain number of nodes ahead
of time and maintains open connections to them in a data
structure called the node lookahead buffer (NLB). When the
pull thread asks for the next random node, the Random
Walker returns one open connection from the NLB (and
removes it from the NLB). Having a connection already
open saves on TCP connection setup time. During a
random walk on the overlay, if there are any network
failures or timeouts, the Random Walker resets back to a
random neighbor and continues. Connection management
is crucial for CREW since many connections are opened
and “discarded” (not needed) rapidly. The underlying
middleware takes care of cleaning up unused sockets. Thus,
CREW does not need to worry about managing socket
connections explicitly.

Neighbor manager. The Neighbor Manager is primarily
responsible for neighbor fault detection and recovery. The
Neighbor Manager periodically (1 second) “pings” one
neighbor selected at random from the neighbor list. In
CREW, each node maintains a neighbor list of size five. If a

neighbor fails to respond to the ping, and if the number of
neighbors are below five, then the Neighbor Manager
initiates the Bounce protocol. The Bounce protocol itself
involves a random walk on the overlay. The Neighbor
Manager, thus, uses the Random Walker to get random
nodes to try and acquire as neighbors. The open connec-
tions in the NLB further speeds up the tryouts and the
recovery phase.

7 PERFORMANCE EVALUATION

7.1 Experimental Framework

In our experiments, we test CREW in terms of:

1. How fast it can disseminate information to a set of
receivers over spread across a wide area network,

2. How it scales with increasing system size and
increasing content size,

3. What is its data overhead,
4. How well it adapts and exploits heterogeneity in the

networks, and
5. How gracefully it scales in presence of heteroge-

neous network errors.

To measure these factors, and be confident that the
results would be a good indication of what one could expect
in a real deployment, we setup a testbed using Modelnet [6],
which is a real-time network traffic shaper and provides an
ideal base to test various systems without modifying them.
Further, Modelnet allows for customized setup of various
network topologies. Using Modelnet, we compare CREW
with actual optimized implementations of BitTorrent,
Bullet, SplitStream, and Asynchronous TCP Gossip under
different conditions. Next, we describe our experimental
testbed and the network topologies that we used.

7.1.1 Testbed

The testbed consists of a FreeBSD machine as an emulator
and four Debian Linux hosts. All machines support Gigabit
ethernet interfaces and are connected by a dedicated
Gigabit router. The emulator is a dual processor 2.6 Ghz
machine with 2 GB of RAM while the hosts are single
processor machines running at 2.8 Ghz with 500 MB of
RAM. The emulator machine runs a custom FreeBSD Kernel
configured with a system clock running at 1,000 Hz (as
required by Modelnet). The hosts run Linux with a
customized 2.6 version kernel.4 The hosts support Java
version 1.5, Python version 2.3.5, and GCC version 3.3.5. All
hosts are synchronized to within two milliseconds through
NTP (Network Time Protocol).

To model the vagaries of the underlying Internet, we
used the Inet [4] topology generator tool to generate Internet
router topologies of 5,000 routers. Inet generates topologies
on a XY plane, which Modelnet then uses to emulate inter-
router (and hence internode) latencies. Bandwidth con-
straints and network packet loss rates are specified
separately in Modelnet. Primarily, we used two main
network topologies: 1) a homogeneous network, where all
end nodes have equal bandwidth of 200 Kbps and 2) a
heterogeneous network with end nodes at three levels of
bandwidth: 200, 800, and 3,200 Kbps. Additionally, we
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generated homogeneous networks with varying packet loss
rates, from 1 to 20 percent. For all network topologies,
however, the latency between nodes is always heteroge-
neous, as dictated by the router backbone generated by Inet.

Our choice of bandwidths for nodes requires some
explanation since the testbed imposes certain restrictions.
First, the maximum bandwidth generated in the testbed
cannot exceed 1 Gbps (bottleneck of emulator NIC card and
router). Second, to keep the emulator from being over-
loaded, we did not want to generate data at such a rate that
the emulator CPU usage went above 10 percent. Third,
while Modelnet provides for running many virtual nodes in
one physical host, we did not want to create so many
processes that the swap space was being used. Under these
constraints, we would still like to simulate reasonable
bandwidth assumptions.

7.1.2 Comparison Systems

Our choice of comparison systems is not to exhaustively
compare CREW to all dissemination systems but to compare
it to well-known “sample points” in the application-layer
broadcast/multicast systems space. The primary motivation
is to test if CREW, and hence a gossip-based approach,
can perform comparably to optimized overlay dissemina-
tion systems. BitTorrent is the current defacto system for
distributing large content in the Internet today. Moreover, it
is a fully mesh-based system. Bullet is a hybrid tree/mesh
system, while SplitStream is primarily a tree/forest-based
system (for content delivery paths). To compare these
various systems, we ran actual implementations of them
over Modelnet. It should be noted that some of the
comparison systems are not designed for fixed size content
delivery. However, for these systems, we have given
optimistic interpretation of how they would disseminate
fixed size content. Specifics of the comparison systems are
given below.

BitTorrent. We downloaded and used the python source
code for BitTorrent version 4.0.2. We changed the source
code so that we could instrument the total bytes that were
sent/received by a BitTorrent client.

Bullet. For bullet, we used the source code of Macedon
version-1.2.1 [5]. This version did not contain Bullet0[19],
an optimized system designed explicitly for large content
distribution. Bullet is inherently a streaming protocol. To
compare it to other content dissemination systems, we
made a minor change to the source code of the appmacedon
driver file. During streaming, a Bullet node logs the time
when it first receives data, to the time when it receives data
that corresponds to a particular file/content size. This is a
simplification because there is no explicit logic in each
node to get “missing data.” This simplification is repre-
sentative of the best case scenario if Bullet were used for
dissemination content.

SplitStream. The Macedon framework provides built-in
support for various P2P protocols, including SplitStream.
We used the same appmacedon driver as before but changed
the underlying protocol to SplitStream.

Asynchronous TCP gossip. We also developed a sophisti-
cated Gossip system based on lpbcast. Our primary goal
was to test the dissemination speed and, hence, we
removed the sampling service logic of lpbcast, replacing it
with an “ideal” sampling service. Each node is supplied
with the list of all other nodes and, thus, does not need to

send its view. Therefore, the overhead from sampling
service is zero and is a best case scenario. Gossip is
implemented asynchronously with each node sending
every unique gossip message, as soon as it gets it, to four
other nodes. Further, we send the gossip message via TCP
due to the problems of congestion with UDP. A sophisti-
cated communication substrate was also designed for
sending the gossip messages. Each node maintains a
thread-pool (of size 10) to send gossip messages. Many
gossip messages can therefore overlap, if necessary, for
increased concurrency. We added error handling as well. A
gossip send is tried multiple (4) times (with increasing
backoff time), in case the receiver is currently overwhelmed.
This was designed as a primitive means of congestion
control. Our goal was to take the basic idea of lpbcast and
then implement concurrency, heterogeneity, and congestion
adaptation into it.

7.1.3 Testing Methodology and Metrics

Each of our experimental runs consists of one “server” and
multiple peers. The server is a node in that particular
system that initially has all the content. A test starts when
the first peer receives the first piece of content and the test
ends when all peers have all the content. The different
nature of the systems introduces slight variations to the
tests. Before a test starts, we want all nodes to be “up” and
already started. In BitTorrent, the .torrent file (metadata) is
already present in each node. We start the seeder last in a
BitTorrent run so that there is no node startup latency.
When the seeder enters the system, all nodes have already
formed the BitTorrent mesh. For Bullet and SplitStream, we
wait 30 seconds before streaming, so that any optimization
that they need to perform can take place. For CREW, we
introduce the “server” last. Unlike BitTorrent, though, a run
in CREW includes the metadata broadcast time as well. The
server is always a 200 Kbps node, irrespective of the
network topology. We run each experiment five times and
plot the average value of the five runs. In our experiments,
we measure three major metrics:

Complete dissemination time (or Completion Time in short).
Completion time is the amount of time from when the
dissemination process is started at the seeder until all
(100 percent of) the nodes in the network receive all the
content.

Dissemination coverage speed (or Coverage Speed in short).
Coverage speed captures how fast data dissemination
proceeds over the network. It indicates how many nodes
have received all the content at a certain point of time.

Dissemination data overhead percentage (or Data Overhead in
short). Data overhead measures the average extra data bytes
that are transmitted at each node for dissemination. It is
defined as:

Data Overhead ¼ total data bytes transmitted

num nodes� file size � 1

� �
� 100:

7.2 Experimental Results

The experimental results are presented in several aspects:
network size scalability, content size scalability, adapt-
ability to both bandwidth heterogeneity, and lossy links.
Unless otherwise specified, the default settings for the
experiments are:
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1. homogeneous networks,
2. 1 percent upper loss rate,
3. 100K content size and
4. 60 nodes.

We use an optimized version of CREW when comparing
with other systems. At the end of the section, we present
results that show why we selected this particular version
of CREW.

7.2.1 Network Size Scalability

We first analyze the time and data overhead to disseminate
a 100K file among an increasing number of recipients. A
homogeneous network with each node at 200 Kbps is used
and the total number of recipients is varied. As Fig. 8a
shows, when the number of recipients is greater than 10,
CREW disseminates faster than all the other systems; and
for 60 nodes, CREW is almost twice as fast the next best
system, BitTorrent. CREW, therefore, achieves extremely
rapid dissemination. As previously stated (Section 3),
metadata propagation is extremely fast and initiates all
nodes almost simultaneously into the dissemination process
(CREWMETA line in Fig. 8a).

TCPGossip also scales well, with dissemination time
close to that of BitTorrent. Bullet and SplitStream, however,
seem to scale poorly and rather erratically. To examine why
this was so, we plotted the dissemination spread of the
various systems, as shown in Fig. 8b where the completion
times of 60 nodes for a particular run of the five systems are
plotted. As an example, in SplitStream, after 100 seconds,
around 38 nodes have received all the disseminated content.
In Bullet, it takes a very long time for the last fraction of
nodes to get all the data; a worst case is plotted in Fig. 8c. We
conjecture that Bullet and SplitStream take longer to
stabilize and involve all nodes in the dissemination process.
While disseminating large content, this is masked but

becomes apparent when disseminating small amounts of
data. Fig. 8b also shows that at any given point of time,
nodes in CREW get the content faster than any of the other
systems. The fast ramp-up speed of CREW and significant
concurrency contribute to its superior performance.

Fig. 8d plots the comparison of data overhead with
varying number of nodes for BitTorrent and CREW.
TCPGossip incurs a constant 300 percent data overhead
(due to the fan-out of 4), and, hence, is not plotted. For
Bullet and SplitStream, the API provided did not allow us
to instrument data transmitted and received and, hence, we
were unable to measure their overhead. Hence, they have
not been plotted either. As Fig. 8d shows the overhead for
CREW is much lesser than that of BitTorrent (and both are
orders of magnitude less than TCPGossip). Additionally,
the overhead in CREW seems to grow more slowly than
that of BitTorrent, with increasing network size.

7.2.2 Content Size Scalability

In Fig. 9, we examine the time and the data overhead to
disseminate content of varying size, from 25K to 800K,
among 60 peers with homogeneous bandwidth. The
dissemination time increases almost linearly for all
systems. However, the different systems display interest-
ing and characteristic behavior depending upon the
content to be disseminated. TCPGossip does extremely
fast dissemination when the content is small (as seen in
Fig. 9b) but the time for complete dissemination increases
more rapidly than other systems, when content size
increases. Thus, it takes the longest time to disseminate
800K. This is characteristic and shows why gossip-based
protocols are well suited for fast dissemination of small
content but unsuitable for large content. SplitStream has
the highest dissemination time for small content but scales
extremely well. The remaining three systems (CREW,
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BitTorrent, and Bullet) all exhibit similar behavior—sug-
gesting that CREW may in fact perform quite well with
very large content too. Fig. 9c shows CREW’s data
overhead in disseminating different content size compared
to BitTorrent. Both CREW and BitTorrent use less extra
data to disseminate larger content with data overhead of
BitTorrent decreasing more than that of CREW.

7.2.3 Adaptation to Heterogeneous Networks

We now evaluate how well the different systems are able to
adapt to and exploit varying node bandwidths. In this
experiment, we maintained a constant ratio of high-
bandwidth nodes to low bandwidth nodes; for every four
nodes of 200 Kbps, there is a high-bandwidth node of
800 Thus, while testing the dissemination time for 40 nodes,
there are 32 low-bandwidth nodes and eight high-band-
width nodes. Additionally, when there are more than
45 nodes present, we introduce an even higher bandwidth
node, that of 3,200 Kbps. We manually changed the
homogeneous network topology file of Modelnet to gen-
erate this heterogeneous network. The network latencies are
the same as the homogeneous network. The dissemination
time of the various systems in heterogeneous network are
plotted in Fig. 10a. The spread times are shown in Fig. 10b.

CREW, Bullet, and SplitStream are all able to exploit
heterogeneity to achieve faster dissemination time (as the
comparisons show in Figs. 10c and 10d). However,
BitTorrent seems unable to exploit heterogeneous band-
widths and the dissemination time is not reduced as
compared to that in a homogeneous network. This is
probably due to the small content size and BitTorrent nodes
do not get enough time to form a good mesh. The time for
BitTorrent to ramp-up to a good mesh, therefore, seems to
affect its ability to exploit heterogeneity fast enough. Also,
TCPGossip performs worse in a heterogeneous network as
compared to a homogeneous network. We conjecture that
this is due to the combination of fixed fan-out and the low-
bandwidth nodes. High-bandwidth nodes cannot use its
bandwidth effectively and low-bandwidth nodes become
bottleneck of the dissemination process to make the
dissemination time longer.

7.2.4 Adaptability to Network Faults

We now analyze the effect of packet loss rate on dissemina-
tion time. Our aim is to emulate an unpredictable network
whose fault rate is not known in advance. To emulate this,
we generated various topologies with Modelnet by specify-
ing lower and upper bound packet drop rates. For example,

by specifying an upper loss rate of 5 percent and a lower loss
rate of 0 percent, Modelnet assigns a packet loss rate at
random from 0-5 percent to each of the 5,000 routers. The
packet loss between any two end nodes is, therefore,
different and heterogeneous. We generated six different
topologies with upper loss rates varying from 1 to 20 percent
and lower loss rates fixed at 0 percent. The 20 percent loss
rate topology is particularly pathological and extremely
heterogeneous in terms of the packet loss rates. The
throughput of the systems are plotted in Fig. 11.

CREW uses TCP for all its communication and intui-
tively its performance must degrade sharply as the packet
loss increases. However, as can be seen in Fig. 11a, the
degradation, in reality, is graceful. The concurrency in
CREW is an extremely powerful mechanism that prevents
rapid degradation of throughput under unstable network
conditions. The degradation, however, still seems sharper
as compared to BitTorrent. This is true if one considers
100 percent completion time of all peers. If the actual finish
times of the various peers are compared, as in Fig. 11b, it is
clear that most peers using CREW actually finish much
faster than those in BitTorrent. It is the “tail,” the last 10-15
peers, that actually make the total completion time for
CREW longer. These peers are the ones that connect over
very lossy network links and when they try to download
chunks, they often “time-out” resulting in slow and
repeated downloads. This is not an inherent property of
CREW but an artifact of our implementation. We imple-
ment all RPC calls with a timeout. If an RPC does not
complete in a particular time period, it is canceled
irrespective of whether data is still being exchanged. We
are currently working to resolve this “bug.” Fig. 11b also
shows that the peers over less lossy links are not penalized
as much because of other lossy peers. In contrast, all nodes
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in BitTorrent are affected by lossy nodes resulting even in
“good” nodes finishing later.

7.2.5 CREW Specific Optimizations

We evaluate the performance of various variations of
CREW to analyze what works best. In particular, we want
to evaluate whether concurrent pull optimization (in
Section 3.2) is a good feature, whether Push þ Pull exploits
heterogeneity better and finally, study the effect of chunk
size on dissemination time.

Fig. 12a plots the dissemination time for two variations
of CREW: CREWOPT (Fig. 2) has concurrent pull optimiza-
tion turned on while CREWBASIC (Fig. 1) does not have
any concurrency. The difference in dissemination time is
quite noticeable, especially as the network of nodes grows
in size. This reemphasizes the value of concurrent pull
optimization.

Next , we evaluate if Push along with Pull
(CREWPUSH ON ) leads to decreased dissemination time.
Intuitively, Push þ Pull should lead to increased concur-
rency and hence reduced di ssemination time. However, as
Fig. 12b shows CREWPUSH ON has slightly longer dissemi-
nation time as compared to a only-pull approach. We
conjecture that this is due to push messages congesting the
network without useful benefit; pull-based concurrency
seems enough to achieve good performance.

Finally, we evaluate the effect of chunk size on the
dissemination time. Figs. 12c and 12d show quite clearly
that a chunk size of 8 KB results in the best performance.
First, we evaluate the performance using a 800 KB file for
60 nodes. The result is shown in Fig. 12c, which shows 8 KB
chunk to perform the best. The question then, is whether
using other chunks results in loss of scalability. Fig. 12d
shows that a larger chunk (16 KB) is quite detrimental to
performance. A large chunk implies less number of chunks
and also increased time to transfer a chunk. This results in
decreased concurrency, hence slowing the dissemination
time. Making the chunk too small, however, results in too
many pulls, again resulting in poorer performance.

8 CONCLUDING REMARKS

Gossip-based broadcast is extremely appealing for flash
dissemination because it is scalable and resilient to faults.
However, because gossip may entail redundant transmis-
sion of messages, its performance becomes poorer as the
size of the disseminated content increases. In this paper, we
introduced CREW, a new gossip-based protocol for flash
dissemination that scales extremely well, achieving fast

dissemination irrespective of network or content size. We
also analyzed and showed how it is resilient to various
types of failures.

Even though we designed CREW with flash dissemina-
tion in mind, its good performance may be useful for other
applications as well. For example, CREW could be used for
dissemination of software patches or updates to millions of
machines. All machines should receive the required patches
as soon as possible. CREW, is however, currently designed
for nodes that are fully cooperative. Adapting CREW for a
barter approach [12] is extremely challenging due to the
gossip nature of the protocol; nodes cannot establish long
standing “barter agreements.”
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